skip to main content


Search for: All records

Creators/Authors contains: "Figlus, Jens"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coastal risk reduction features are often built to protect infrastructure and ecosystems from damaging waves, sea level rise, and shoreline erosion. Engineers often use predictive numerical modeling tools, such as Delft3D to help design optimal intervention strategies. Still, their use by coastal managers for optimizing the design of living shorelines in complex geomorphic environments has been limited. In this study, the Delft3D modeling suite is used to help select the optimum living shoreline structure for a complex inlet and bay system at Carancahua Bay, Texas. To achieve this goal, an extensive array of sensors was deployed to collect hydrodynamic and geotechnical data in the field, and historical shoreline changes were assessed using image analysis. The measured data were then used to parameterize and validate the baseline Delft3D model. Using this validated model, the hydrodynamics resulting from a series of structural alternatives were simulated and compared. The results showed that the mouth of this complex inlet has widened greatly since the 1800s due to wave erosion and sea level rise. The analysis of the structural alternatives showed it was not advisable to attempt a return of the inlet to its historical extent, but rather to create a hybrid design that allowed for limited flow to continue through a secondary inlet. The numerical modeling effort helped to identify how to best reduce wave and flow energy. This study provides a template for the application of Delft3D as a tool for living shoreline design selection under complex shallow-estuary and inlet dynamics. 
    more » « less
  2. Vegetated coastal sand dunes can be vital components of flood risk reduction schemes due to their ability to act as an erosive buffer during storm surge and wave attack. However, the effects of plant morphotypes on the wave-induced erosion process are hard to quantify, in part due to the complexity of the coupled hydrodynamic, morphodynamic, and biological processes involved. In this study the effects of four vegetation types on the dune erosion process under wave action was investigated in a wave flume experiment. Sand dune profiles containing real plant arrangements at different growth stages were exposed to irregular waves at water levels producing a collision regime to simulate storm impact. Stepwise multivariate statistical analysis was carried out to determine the relationship of above- and below-ground plant variables to the physical response. Plant variables included, among others, fine root biomass, coarse root biomass, above-ground surface area, stem rotational stiffness, and mycorrhizal colonization. Morphologic variables, among others, included eroded sediment volume, cross-shore area centroid shift, and scarp retreat rate. Results showed that vegetation was able to reduce erosion during a collision regime by up to 37%. Although this reduction was found to be related to both above- and belowground plant structures and their effect on hydrodynamic processes, it was primarily accounted for by the presence of fine root biomass. Fine roots increased the shear strength of the sediment and thus lowered erosional volumes and scarp retreat rates. For each additional 100 mg/L of fine roots (dry) added to the sediment, the erosional volume was reduced by 6.6% and the scarp retreat rate was slowed by 4.6%. Coarse roots and plant-mediated mycorrhizal colonization did not significantly alter these outcomes, nor did the apparent enhancement of wave reflection caused by the fine roots. In summary, fine roots provided a unique ability to bind sediment leading to reduced dune erosion. 
    more » « less
  3. null (Ed.)
    During tropical cyclones, processes including dune erosion, overwash, inundation, and storm-surge ebb can rapidly reshape barrier islands, thereby increasing coastal hazards and flood exposure inland. Relatively few measurements are available to evaluate the physical processes shaping coastal systems close to shore during these extreme events as it is inherently challenging to obtain reliable field data due to energetic waves and rapid bed level changes which can damage or shift instrumentation. However, such observations are critical toward improving and validating model forecasts of coastal storm hazards. To address these data and knowledge gaps, this study links hydrodynamic and meteorological observations with numerical modeling to 1) perform data-model inter-comparisons of relevant storm processes, namely infragravity (IG) waves, storm surge, and meteotsunamis; and 2) better understand the relative importance of each of these processes during hurricane impact.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/kUizy8nK3TU 
    more » « less
  4. Abstract

    Meteotsunami waves can be triggered by atmospheric disturbances accompanying tropical cyclone rainbands (TCRs) before, during, and long after a tropical cyclone (TC) makes landfall. Due to a paucity of high‐resolution field data along open coasts during TCs, relatively little is known about the atmospheric forcing that generate and resonantly amplify these ocean waves, nor their coastal impact. This study links high‐resolution field measurements of sea level and air pressure from Hurricane Harvey (2017) with a numerical model to assess the potential for meteotsunami generation by sudden changes in air pressure accompanying TCRs. Previous studies, through the use of idealized models, have suggested that wind is the dominant forcing mechanism for TCR‐induced meteotsunami with negligible contributions from air pressure. Our model simulations show that large air pressure perturbations (∼1–3 mbar) can generate meteotsunamis that are similar in period (∼20 min) and amplitude (∼0.2 m) to surf zone observations. The measured air pressure disturbances were often short in wavelength, which necessitates a numerical model with high temporal and spatial resolution to simulate meteotsunami triggered by this mechanism. Sensitivity analysis indicates that air pressure forcing can produce meteotsunami with amplitudesO(0.5 m)and large spatial extents, but model results are sensitive to atmospheric factors, including model uncertainties (length, forward translation speed, and trajectory of the air pressure disturbance), as well as oceanographic factors (storm surge). The present study provides observational and numerical evidence that suggest that air pressure perturbations likely play a larger role in meteotsunami generation by TCRs than previously identified.

     
    more » « less